Digital Communication Systems ECS 452

Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th
4. Mutual Information and Channel Capacity

Office Hours:
BKD, 6th floor of Sirindhralai building
Monday $\quad 10: 00-10: 40$
Tuesday 12:00-12:40
Thursday $\quad 14: 20-15: 30$

Reference for this chapter

- Elements of Information Theory
- By Thomas M. Cover and Joy A. Thomas
- 2nd Edition (Wiley)
- Chapters 2, 7, and 8
- $1^{\text {st }}$ Edition available at SIIT library: Q360 C68 1991

Digital Communication Systems ECS 452

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th
Information-Theoretic Quantities

Conditional Entropies

Amount of randomness in Y

Amount of randomness
still remained in Y when
we know that $X=x$.

$$
H(Y) \equiv-\sum_{y \in \mathcal{Y}} q(y) \log _{2} \overbrace{q(y)}^{P[Y=y]} \equiv H(\underline{\mathbf{q}})
$$

$$
\overbrace{H(Y \mid X=x)}^{\text {given a particular value } x} \equiv H(Y \mid x) \equiv-\sum_{y \in \mathcal{Y}} Q(y \mid x) \log _{2} \overbrace{Q(y \mid x)}^{P[Y=y \mid X=x]}
$$

Apply the entropy calculation to a row from the \mathbf{Q} matrix

The average amount of randomness still remained in Y when we know X

$$
\begin{aligned}
H(Y \mid X) & \equiv \sum_{x \in \mathcal{X}} p(x) H(Y \mid x) \\
& =H(X, Y)-H(X) \\
& =H(Y)-I(X ; Y)
\end{aligned}
$$

Diagrams [Figure 16]

Venn Diagram

Information Diagram

Diagrams [Figure 16]

Probability Diagram

Diagrams

$$
P(B \backslash \mathrm{~A})=P(A \cup B)-P(A)
$$

$$
H(Y \mid X)=H(X, Y)-H(X)
$$

Digital Communication Systems ECS 452

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th
Operational Channel Capacity

Example: Repetition Code

- Original Equivalent Channel:

- BSC with crossover probability $p=0.01$
- New (and Better) Equivalent Channel:

- Use repetition code with $n=5$ at the transmitter
- Use majority vote at the receiver
- New BSC with $\tilde{p}=\binom{5}{3} p^{3}(1-p)^{2}+\binom{5}{4} p^{4}(1-p)^{1}+\binom{5}{5} p^{5}(1-p)^{0} \approx 10^{-5}$

Example: Repetition Code

- Original Equivalent Channel:

- BSC with crossover probability $p=0.1$
- New (and Better) Equivalent Channel:

- Use repetition code at the transmitter
- Use majority vote at the receiver
- New BSC with new crossover probability \tilde{p}

Reminder

[From ECS315]

Example 6.58. Digital communication over unreliable channets: Consider a digital communication system through the binary symmetric channel (BSC) discussed in Example 6.18. We repeat its compact description here.

Suppose you put 010110 into this channel.
what is the probability that

$$
85
$$

$$
\begin{gathered}
(1-p)(1-p) p p(1-p)(1-p) \\
=(1-p)^{4} p^{2}
\end{gathered}
$$

$$
\begin{aligned}
P(\varepsilon) & =P(\varepsilon \mid[x=0]) P[x=0]+p(\varepsilon \mid[x=1]) P[x=1] \\
= & p \times P[x=0] \quad+\quad 1 \\
& \quad \text { Again this channel can be described as a channel that introduces }
\end{aligned}
$$

One method of reducing the error rate is to use error-correcting codes:

A simple error-correcting code is the repetition code. Exam-

Two ways to calculate the probability of error:
(a) (transmission) error occurs if and only if the number of bits in error are ≥ 3.
$(p[\hat{M} \neq M]=) p(\varepsilon)=\binom{5}{3} p^{3}(1-p)^{2}+\binom{5}{4} p^{4}(1-p)+\binom{5}{5} p^{5}(1-1)^{2}$
(b) (transmission) error occurs if and only if the number of bits not in error are ≤ 2.

$$
p(\varepsilon)=\binom{5}{0}(1-\rho)^{0} p^{5}+\binom{5}{1}(1-\rho)^{1} p^{4}+\binom{5}{2}(1-\rho)^{2} p^{3}
$$

Example: Repetition Code

n	\tilde{p}
1	$p=0.1$
3	$\binom{3}{2} p^{2}(1-p)+\binom{3}{3} p^{3} \approx 0.0280$
5	$\binom{5}{3} p^{3}(1-p)^{2}+\binom{5}{4} p^{4}(1-p)^{1}+\binom{5}{5} p^{5} \approx 0.0086$
7	≈ 0.0027
9	$\approx 8.9092 \times 10^{-4}$
11	$\approx 2.9571 \times 10^{-4}$

Digital Communication Systems ECS 452

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th
Information Channel Capacity

Channel Capacity

"Operational": max rate at which reliable communication is possible

Channel Capacity
Arbitrarily small error probability can be achieved.
"Information": $\max _{\mathbf{p}} I(X ; Y)$ [bpcu]

Shannon [1948] shows that these two quantities are actually the same.

MATLAB

```
function H = entropy2s(p)
% ENTROPY2 accepts probability mass function
% as a row vector, calculate the corresponding
% entropy in bits.
p=p(find(abs(sort(p)-1)>1e-8)); % Eliminate 1
p=p(find(abs(p)>1e-8)); % Eliminate 0
if length(p)==0
    H = 0;
else
    H = simplify(-sum(p.*log(p))/log(sym(2)));
end
```

```
function I = informations(p,Q)
X = length(p);
q = p*Q;
HY = entropy2s(q);
temp = [];
for i = 1:X
    temp = [temp entropy2s(Q(i,:))];
end
HYgX = sum(p.*temp);
I = HY-HYgX;
```


Capacity calculation for BAC

Capacity of 0.0918 bits is achieved by $\underline{p}=[0.5380,0.4620]$

Capacity calculation for BAC


```
close all; clear all; >> Capacity_Ex_BAC
syms p0
p = [p0 1-p0];
Q = [1 9; 4 6]/sym(10);
I = simplify(informations(p,Q))
p0o = simplify(solve(diff(I)==0))}|>|\begin{array}{l}{\textrm{po}=}\\{0.5376 0.4624}
po = eval([p0o 1-p0o])
C = simplify(subs(I,p0,p0o))
eval(C)
```



```
>p0o =
    (27648*2^(1/3))/109565-(69984*2^(2/3))/109565 + 135164/109565
C=
    (log((3*3^(4/5))/10)*((27648*2^(1/3))/109565-(69984*2^(2/3))/109565 +
    135164/109565))/log(2)-(log((104976*2^(2/3))/547825-(41472*2^(1/3))/547825+
16384/547825)*((104976*2^(2/3))/547825 - (41472*2^(1/3))/547825+
16384/547825) + log((41472*2^(1/3))/547825-(104976*2^(2/3))/547825 +
    531441/547825)*((41472*2^(1/3))/547825 - (104976*2^(2/3))/547825 +
    531441/547825))/log(2)+(log((5*2^(3/5)*3^(2/5))/6)*((27648*2^(1/3))/109565 -
    (69984*2^(2/3))/109565 + 25599/109565))/log(2)

\section*{Same procedure applied to BSC}

```

close all; clear all;
syms p0
p = [p0 1-p0];
Q = [6 4; 4 6]/sym(10);
I = simplify(informations(p,Q))
p0o = simplify(solve(diff(I)==0))}|[\begin{array}{c}{\textrm{p}0\textrm{o}}
{1/2}
po = 防 =
po = eval([p0o 1-p0o])}<0.5000 0.500
C = simplify(subs(I,p0,p0o))
log((2*2^(2/5)*\mp@subsup{3}{}{\wedge}(3/5))/5)/log(2)
->ans=
eval(C)
0.0290

```

\section*{Blahut-Arimoto algorithm}
```

function [ps C] = capacity_blahut(Q)
% Input: Q = channel transition probability matrix
% Output: C = channel capacity
% ps = row vector containing pmf that achieves capacity
tl = 1e-8; % tolerance (for the stopping condition)
n = 1000; % max number of iterations (in case the stopping condition
% is "never" reached")
nx = size(Q,1); pT = ones(1,nx)/nx; % First, guess uniform X.
for k = 1:n
qT = pT**;
% Eliminate the case with 0
% Column-division by qT
temp = Q.*(ones(nx,1)*(1./qT));
%Eliminate the case of 0/0
l2 = log2(temp);
l2(find(isnan(l2) | (l2==-inf) | (l2==inf)))=0;
logc = (sum(Q.*(l2),2))';
CT = 2.^(logc);
A = log2(sum(pT.*CT)); B = log2(max(CT));
if((B-A)<tl)
break
end
% For the next loop
pT = pT.*CT; % un-normalized
pT = pT/sum(pT); % normalized
if(k == n)
fprintf('\nNot converge within n loops\n')
end
end
ps = pT;
C = (A+B)/2;

Capacity calculation for BAC: a revisit


```
close all; clear all; >> Capacity_Ex_BAC_blahut
Q = [1 9; 4 6]/10;
    0.5376 0.4624
[ps C] = capacity_blahut(Q)
    0.0918
```


Richard Blahut

- Former chair of the Electrical and
Computer
Engineering
Department at the University of Illinois at Urbana-Champaign
- Best known for Blahut-Arimoto algorithm
(Iterative
Calculation of C)

Modem Theory
An introduction to Telecommunications

Claude E. Shannon Award

Claude E. Shannon (1972)
David S. Slepian (1974)
Robert M. Fano (1976)
Peter Elias (1977)
Mark S. Pinsker (1978)
Jacob Wolfowitz (1979)
W. Wesley Peterson (1981)

Irving S. Reed (1982)
Robert G. Gallager (1983)
Solomon W. Golomb (1985)
William L. Root (1986)
James L. Massey (1988)
Thomas M. Cover (1990)
Andrew J. Viterbi (1991)

Elwyn R. Berlekamp (1993)
Aaron D. Wyner (1994)
G. David Forney, Jr. (1995)

Imre Csiszár (1996)
Jacob Ziv (1997)
Neil J. A. Sloane (1998)
Tadao Kasami (1999)
Thomas Kailath (2000)
Jack Keil Wolf (2001)
Toby Berger (2002)
Lloyd R. Welch (2003)
Robert J. McEliece (2004)
Richard Blahut (2005)
Rudolf Ahlswede (2006)

Sergio Verdu (2007)
Robert M. Gray (2008)
Jorma Rissanen (2009)
Te Sun Han (2010)
Shlomo Shamai (Shitz) (2011)
Abbas El Gamal (2012)
Katalin Marton (2013)
János Körner (2014)
Arthur Robert Calderbank (2015)
Alexander S. Holevo (2016)
DavidTse (2017)

Berger plaque

Raymond Yeung

- BS, MEng and PhD degrees in electrical engineering from Cornell University in 1984, 1985, and 1988, respectively.

